Conditions for regular $B$-spline curves and surfaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast and Local Fairing of B-Spline Curves and Surfaces

The paper proposes a fast fairing algorithm for curves and surfaces. It rst de nes a base algorithm for fairing curves, which is then extended to the surface case, where the isocurves of the surface are faired. The curve fairing process involves the discrete integration of a pseudo-arc-length parameterization of B-spline curves, with a blending and tting phase concluding the algorithm. In the c...

متن کامل

Morphing Rational B-spline Curves and Surfaces Using Mass Distributions

A rational B-spline curve or surface is a collection of points associated with a mass (weight) distribution. These mass distributions can be used to exert local control over the morph between two rational B-spline curves or surfaces. Here we propose a technique for designing customized morphs by attaching appropriate mass distributions to target B-spline curves and surfaces. We also develop a u...

متن کامل

Approximation with Active B-Spline Curves and Surfaces

An active contour model for parametric curve and surface approximation is presented. The active curve or surface adapts to the model shape to be approximated in an optimization algorithm. The quasi-Newton optimization procedure in each iteration step minimizes a quadratic function which is built up with help of local quadratic approximants of the squared distance function of the model shape and...

متن کامل

Convexity conditions for parametric tensor-product B-spline surfaces

This paper provides four alternative suucient condition-sets, ensuring that a patch of a parametric tensor-product B-spline surface is locally convex. These conditions are at most tri-quadratic with respect to the control points of the surface.

متن کامل

Projection of curves on B-spline surfaces using quadratic reparameterization

Curves on surfaces play an important role in computer aided geometric design. In this paper, we present a hyperbola approximation method based on the quadratic reparameterization of Bézier surfaces, which generates reasonable low degree curves lying completely on the surfaces by using iso-parameter curves of the reparameterized surfaces. The Hausdorff distance between the projected curve and th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ESAIM: Mathematical Modelling and Numerical Analysis

سال: 1992

ISSN: 0764-583X,1290-3841

DOI: 10.1051/m2an/1992260101771